
Automated First-Order Theorem Proving

in Software Engineering

Johann Schumann
RIACS / NASA Ames

schumann@ptolemy.arc.nasa.gov

June 2000

ATP in Software Engineering

Johann Schumann

Introduction

� formal methods in software engineering
p

� formal methods require tools

{ automatic
{ powerful
{ trustworthy
{ usable

ATP in Software Engineering 1

Johann Schumann

Application Areas for formal methods [tools]

� throughout the entire SW life-cycle

� where?

{ Veri�cation
{ Synthesis of
� code
� designs

{ software reuse
{ debugging/testing
{ . . .

ATP in Software Engineering 2

Johann Schumann

Inference Systems

� inference system as a \kernel" of formal methods tools

� model checkers (SMV, SPIN)

{ successful for hardware
{ software ?
{ can you trust a MC? (no proof)

� interactive theorem provers (HOL, PVS, Isabelle, . . .)

{ too interactive
{ require specialists

ATP in Software Engineering 3

Johann Schumann

Inference Systems II

� no prover

{ probably the best if you know what to do

� symbolic algebra systems (Mathematica,. . .) and similar systems

{ good in math, bad in reasoning
{ correct? ((x � y)=x) y)

� automated theorem provers for �rst order logic

{ currently restricted \more by general usability than by raw deductive
power" [Kaufmann,98]

{ can they be used? / what has to be done? (this tutorial!)

ATP in Software Engineering 4

Johann Schumann

Overview

1. Introduction

2. Logic Foundations

3. Proof Tasks and their Characteristics

4. Case Studies

(a) logic-based component retrieval
(b) synthesis of scienti�c software
(c) veri�cation of cryptographic protocols

5. Requirements and Techniques

6. Conclusions

ATP in Software Engineering 5

Johann Schumann

Logical Foundations

� Predicate Logic

� Model Theory

� Formal Systems

� Theorem Proving

{ resolution-style provers
{ tableau-style provers

� strengths and weaknesses of ATPs

ATP in Software Engineering 6

Johann Schumann

First Order Predicate Logic

� de�ned over alphabet of:

{ variables, constants: X;Y; a; 999; []
{ syntactic function symbols: f(t1; : : : ; tm), cons(t1; t2)
{ predicate symbols: p(t1; : : : ; pn), \="
{ connectives: :;^;_;!;$
{ quanti�ers: 9;8

� Example: 8L � (L = [] _ (9H;T � L = cons(H;T))

� syntax only

ATP in Software Engineering 7

Johann Schumann

Model Theory

� interpretation of formula over domain of discourse D

� valuation function: assign values to terms, True/False to predicates

� Example: 8L � (L = [] _ (9H;T � L = cons(H;T))

I1 D = lists [] is empty list cons(H;T) is list constructor

I2 D = traces [] is empty trace cons(H;T) is prepend element to trace

I3 D = IN [] = 0 cons(H;T) is add number to sum H + �T

� F is satis�able if there is at least one valuation v: v(F) = True

X + 3 > 5 is satis�able, but not valid; X = 0 ^X = 1 is unsatis�able

� F is valid if v(F) = True for all v and all interpretations (j= F)
8A;B �A�B = B � A not valid (matrices!)

ATP in Software Engineering 8

Johann Schumann

Formal Systems

� formal system = formal language + axioms + inference rules

� purely syntactic

� inference rule: e.g. modus ponens
A A ! B

B

� F is a theorem (` F) if obtained from axioms by using inference rules

� important: formal system S is sound if � j= F whenever � ` F

� only then (syntactic) theorem proving makes sense

ATP in Software Engineering 9

Johann Schumann

Theorem Proving

� purely syntactic operations

� compared to model checking: assignment of values

� often refutation: show :F is unsatis�able (i.e., :F ` False)

� FOL is semi-decidable, i.e.,

{ there is no algorithm which says True/False in all cases

{ there are algorithms which eventually say True for a valid formula

{ these algorithms usually do not terminate on non-theorems

� completeness: prover eventually �nds the proof

� soundness: prover �nds no false proofs

ATP in Software Engineering 10

Johann Schumann

First-order Automated Theorem Proving

� black box: AT P(F ; parameter) �! True=False=time-out

� most theorem provers: input in Clausal Normal Form (CNF)

� high complexity (O(exp) or worse)

� two worlds (at least) of ATP:

{ synthetic calculi: generate new formulas from given ones
{ resolution-based theorem provers

{ analytic calculi: operate on given formulas, break them down
{ tableaux-based theorem provers

ATP in Software Engineering 11

Johann Schumann

Clausal Normal Form (CNF)

� speci�c normal form for logic formulas: contains only ^;_;:

� CNF formula is a set of
V
'd clauses

� a clause is a set if
W
'd literals (atom or :atom)

� existential quanti�ers removed by Skolemization: e.g.,
8X9Y 8Z � p(X;Y;Z) =) p(X; fY (X); Z)

� Example:

F :8X8Y � p(X;Y) _ p(Y;X)! 8V 9Z � p(V;Z) ^ p(Z;V)

CNF p(X;Y) _ p(Y;X) ^
:p(a;Z) _ :p(Z; a)

ATP in Software Engineering 12

Johann Schumann

CNF II

� conversion algorithm pretty standard [Loveland78,ClocksinMellish84]

� many optimizations possible

{ optimization of Skolemization: shorter Skolem functions
{ nested $'s cause exponential size of CNF formula
{ \de�nitional normal form" [Eder85,Nonnengart98] avoids this
{ optimizations have signi�cant in
uence on proof times

� \back"-transformation is possible with de�nitional normal form;
never implemented

ATP in Software Engineering 13

Johann Schumann

The Resolution Rule

� [Robinson,1965], 1978 already 25 variants

� inference rule: take two clauses and generate a new one out of them

L;K1; : : : ;Kl :L0;M1; : : : ;Mn

�K1; : : : ; �Kn; �M1; : : : ; �Mn
where �L = �L0.

� use uni�cation to obtain �

� perform resolution step, until the empty clause [] has been obtained.

� then :F is unsatis�able (F is valid)

ATP in Software Engineering 14

Johann Schumann

Example

(1) p(X;Y) _ p(Y;X)
(2) :p(a;Z)

Proof:

p(X;Y) _ p(Y;X) :p(a;Z)
p(Z; a) � = [Xna; Y nZ]

... :p(a;Z)
[] � = [Zna]

ATP in Software Engineering 15

Johann Schumann

Search for the Proof

� potential for search:

{ which clauses participate in resolution
{ which literals are selected there
{ in which order to select clauses (agenda ordering)
{ which resolution rules to take

� breadth-�rst search

� backward and forward subsumption to reduce number of newly generated
clauses

ATP in Software Engineering 16

Johann Schumann

OTTER: a resolution-type ATP

� the classical resolution-style prover

� developed at Argonne Natl. Labs (Bill McCune)

� implemented in C

� many inference rules and parameters with \auto-mode"

� reasonably good CNF transformation

� applications mainly in mathematics

ATP in Software Engineering 17

Johann Schumann

Tableau-based ATP: Model Elimination

� ME [Loveland78]

� start rule

� extension rule

� reduction rule

�
�

�
�

�
�

�
��

Q
Q
Q
Q
Q
Q
Q
QQ

�

p(X;Y) p(Y;X)

J
J
J
J
JJ

J
J
J
J
JJ: p(a;Z) : p(Z; a) : p(a;Z0) : p(Z0; a)

�E �R �E �R

� Example:
p(X;Y) _ p(Y;X) ^
:p(a;Z) _ :p(Z; a)

� Substitutions: Xna; Y na; Zna;Z0na

ATP in Software Engineering 18

Johann Schumann

Search for the Proof

� potential for search:

{ literal selection: which literal to take in the current clause
{ clause selection: extension into which clause

� PROLOG-style depth-�rst, left-to-right search

� iterative deepening for completeness

Proof

Iteration 1 2 3 4

ATP in Software Engineering 19

Johann Schumann

SETHEO: SEquential THEOrem prover

� developed at the Automated Reasoning Group in Munich, Germany

� implemented in C (UNIX, Linux) and PROLOG (preprocessing)

� many extensions for pruning the search space

� iterative deepening over various metrics

� parallel systems: PARTHEO, RCTHEO, SPTHEO, SiCoTHEO,
p-SETHEO

� winner on CADE prover competitions (CASC)

� http://wwwjessen.in.tum.de/~setheo

ATP in Software Engineering 20

Johann Schumann

Strengths and Weaknesses of ATPs

� ATPs are not
exible with respect to logic: \FOL/CNF only"

� ATPs are fully automatic: \interactive mode is a nightmare"

� ATPs are very weak in detecting non-theorems

� ATPs are highly e�cient search algorithms with many knobs to turn

� ATPs �nd proofs fast (or never)

� ATPs produce proofs

� ATPs: many out there (Conf: CADE (CASC), Tableaux, FOL,. . .
Journal AR, Automated Deduction-A Basis for Applications (3 Vols))

ATP in Software Engineering 21

Johann Schumann

Overview

1. Introduction

2. Logic Foundations

3. Proof Tasks and their Characteristics

4. Case Studies

(a) logic-based component retrieval
(b) synthesis of scienti�c software
(c) veri�cation of cryptographic protocols

5. Requirements and Techniques

6. Conclusions

ATP in Software Engineering 22

Johann Schumann

Proof Tasks in Applications

Principle Architecture

Application
System

Inference
System

proof task expected answer

User

Environment

� from the outside

� logic-related characteristics

� system related characteristics

� classi�cation scheme

ATP in Software Engineering 23

Johann Schumann

From the Outside I

� number of proof tasks per \session"

{ 1{10 for veri�cation

{ 100's to 10,000's for component retrieval (search in a library)

� frequency

{ � 50� 100=min for automated online veri�cation

(e.g., veri�cation of down-loadable code,proof-carrying code)

{ � 1=min for interactive systems

{ 0:1=min � 0:01=min for non-interactive, batch-like veri�cation

� \results-while-u-wait" ?

ATP in Software Engineering 24

Johann Schumann

From the Outside II: size and syntactic richness

� size of the formulas

{ even small formulas can be very hard to prove

{ large formulas might contain redundancies and unused parts (! simpli�cation)

� complexity of terms and syntactic richness

{ no function symbols (data logic): problem is decidable

{ �nite domains: problem is decidable

{ rich formulas can have internal structure useful to guide the ATP

{ function symbols with large arity often produce hard-to-�nd proof

ATP in Software Engineering 25

Johann Schumann

\Complexity"

\How di�cult it is to �nd a proof?"

� shallow: proof is easy to �nd (simple structure), although it might be
buried under tons of useless information

� deep: complex proof structure, hard to �nd

ATP in Software Engineering 26

Johann Schumann

\Complexity" vs. Size

model checkers

dynamic

proving in

interactive theorem provers

ATPs

complexity

deep

shallow

small large the ...

ATP in Software Engineering 27

Johann Schumann

\Complexity" vs. Frequency

1/s 10/s frequency

interactive theorem provers

automated theorem provers

model checkers

deep

dynamic complexity

shallow
1/min1/month

ATP in Software Engineering 28

Johann Schumann

Logic-related characteristics

� which logic?

� ratio of theorems vs. non-theorems
\ATPs usually only can detect theorems"

� semantic information?

� expected answer

{ True/False?

{ answer substitution, e.g. query 9X � p(X)

could returns X = a _ b

{ which axioms and hypotheses have been used

{ proofs, human-readable(!) proofs

ATP in Software Engineering 29

Johann Schumann

Classi�cation Table

\start evaluating an application by �lling out the classi�cation table"

Short Table

category value

deep/shallow Shallow Medium Deep

number Small Medium Large

size & richness Small Medium Large
answer-time Short Medium Long

distance Short Medium Long

extensions Y/N which?

validity XX % non-theorems

answer True/False proof other

semantic info Y some N

ATP in Software Engineering 30

Johann Schumann

Overview

1. Introduction

2. Logic Foundations

3. Proof Tasks and their Characteristics

4. Case Studies

(a) logic-based component retrieval
(b) synthesis of scienti�c software
(c) veri�cation of cryptographic protocols

5. Requirements and Techniques

6. Conclusions

ATP in Software Engineering 31

Johann Schumann

Case Study: Component Retrieval

� Goal: �nd components in a reuse library

� produce a \usable" prototype:

{ \You must �nd the component before you can re-use it"

{ \You must �nd the component faster than you can re-build it"

� deduction-based component retrieval (NORA/HAMMR)

{ attach pre- and post- conditions to the library components

{ query in form of (preq; postq)

{ construct proof task for each retrieval operation

{ use deductive methods

� Joint work with B. Fischer [FischerSchumann98,SchumannFischer98]

ATP in Software Engineering 32

Johann Schumann

Requirements

� repository = code + VDM/SL pre-post-conditions (usability)

� large repository results in many proof tasks (10,000's)

� \results-while-u-wait"

� ATP and logic machinery must be hidden from user

ATP in Software Engineering 33

Johann Schumann

Example

� Query:
QUERY (x : List) y : List
pre x 6= []
post 9i : Item; z : List � x = [i]^z ^ y = z^[i]

� Candidate:
tail(l : List)m : List
pre l 6= []
post 9i : Item � l = [i]^m

� proof task of the form: (preq) prec) ^ (preq ^ postc) postq)

� proof found � component can be retrieved

ATP in Software Engineering 34

Johann Schumann

Proof Tasks: Characteristics

category value

deep/shallow Shallow Medium Deep

size & richness Small Medium Large

number Small Medium Large

answer-time Short Medium Long

distance Short Medium Long

extensions equality,sorts
validity 10{15 % theorems

answer True/False

semantic info Y some N

ATP in Software Engineering 35

Johann Schumann

System Architecture: GUI

� Easy usability: start, stop, zoom, browser

� hiding ATP evidence

� �lter pipeline

ATP in Software Engineering 36

Johann Schumann

System Architecture: Filter Pipeline

Goal: drastically reduce number of proof tasks for the ATP

proof tasks

task generator

si
m

pl
ifi

er

si
gn

at
ur

e
m

at
ch

in
g

co
un

te
r e

xa
m

pl
e

ge
ne

ra
tio

n

au
to

m
at

ed
th

eo
re

m
 p

ro
ve

r

signature
matching filters filters

rejection confirmation

number of

ATP in Software Engineering 37

Johann Schumann

Experiments

� library of 119 speci�cations over lists

� full cross match for evaluation: 14161 proof tasks

� 13.1% are valid

� Results:

{ with SETHEO, we get a recall of 74.5%

{ just plug-and-play connection of ATP? NO

{ what had to be done?

ATP in Software Engineering 38

Johann Schumann

Case Study: Deductive Synthesis of Astrodynamics

Programs

� NAIF Fortran library of astrodynamic routines

{ well standardized

{ hard to use because of the FORTRAN names: VXSEC(...)

{ problem solutions can be assembled from library calls

� Goal: Given a graphical speci�cation, synthesize the corresponding
FORTRAN program

� The system: AMPHION [Lowry etal]

{ fully deductive

{ based on the SNARK FOL theorem prover (resolution-style)

ATP in Software Engineering 39

Johann Schumann

Example: Speci�cation

ATP in Software Engineering 40

Johann Schumann

Example: Produced Code

SUBROUTINE SOLAR0 (TGAL,INSTID,SIANG)
C ...
C Input variables

CHARACTER*(*) TGAL
INTEGER INSTID

C Output variables
DOUBLE PRECISION SIANG

C ...
CALL SCS2E (GALILE, TGAL, ETGALI)
CALL BODVAR (JUPITE, 'RADII', DMY1, RADJUP)
CALL SPKSSB (GALILE, ETGALI, 'J2000', PVGALI)
CALL SCE2T (INSTID, ETGALI, TKINST)
TJUPIT = SENT (JUPITE, GALILE, ETGALI)
CALL BODMAT (JUPITE, TJUPIT, MJUPIT)
CALL ST2POS (PVGALI, PPVGAL)
CALL SPKSSB (JUPITE, TJUPIT, 'J2000', PVJUPI)

C ...
CALL SURFNM (RADJUP(1), RADJUP(2), RADJUP(3), P, PP)
CALL MTXV (MJUPIT, P, XP)
CALL MTXV (MJUPIT, PP, XPP)
CALL VADD (PPVJUP, XP, V0)
CALL VSUB (PPVSUN, V0, DV0PPV)
SIANG = VSEP (XPP, DV0PPV)
RETURN
END

ATP in Software Engineering 41

Johann Schumann

Characteristics

category value

deep/shallow Shallow Medium Deep

size & richness Small Medium Large

answer-time Short Medium Long

distance Short Medium Long

extensions equations,�-terms

validity 100 % theorems
answer variable substitutions

explanations

semantic info Y some N

ATP in Software Engineering 42

Johann Schumann

Amphion: System Architecture

Domain
Theory

User Interface
Tables

Interface
Compiler

Formal
Specification

Specification
Checker

Applicative
Program

Subroutine
Library

Fortran
Converter

GUI

Tactics
Proving
Theorem

CODE

USER

Specification Acquisition Subsystem

Program Synthesis Subsystem

Domain Specific Subsystem

SNARK

ATP in Software Engineering 43

Johann Schumann

Amphion: Why does it work?

� short distance between input speci�cation and synthesized code

� linear code (i.e., no loops or recursion)

� rewriting and simpli�cation

� decision procedures for speci�c operations

� answer substitution = functional program

� additional information used to generate explanations

� adapted to other domains:
uid dynamics, navigational software

ATP in Software Engineering 44

Johann Schumann

Case Study: Veri�cation of Authentication Protocols

� Authentication protocols and cryptographic protocols widely in use

{ WWW

{ e-commerce

{ cellular phones, etc

� Authentication protocol (AP): partners must be correctly identi�ed

� high vulnerability

{ bugs in most protocols

{ weak/bad encryption, etc.

� Veri�cation important

� many approaches; here BAN-logic [Burrows, Abadi, Needham 89]

ATP in Software Engineering 45

Johann Schumann

Example: The Kerberos Protocol

� protocol = sequence of messages

� formalized in BAN logic
(multi-sorted modal logic)

� custom logic

� pBj� pAj� fTa; pA
Kab$ pBgKab

� de�ned by ca. 10 inference rules

� typical proof task: pAj� pA
K
$ pB

Alice BobServer
pA,pB

{Ts,L,Kab,Cert}
Kas

{Cert,pA,Ta}
Kab

{Ta + 1}
Kab

ATP in Software Engineering 46

Johann Schumann

Requirements

� automatic operation

� input and proofs in BAN-logic

category value

deep/shallow Shallow Medium Deep

size & richness Small Medium Large

answer-time Short Medium Long

distance Short Medium Long

extensions �nite messages
validity 80%- 90 % theorems

answer readable proof in BAN-logic

semantic info Y some N

ATP in Software Engineering 47

Johann Schumann

Example: manual Proof

As an example for a proof in the BAN logic, let us again consider the Kerberos protocol. We want to show
that

pBj� pAj� pA
Kab$ pB (1)

holds, after messages 1{3 have arrived. Before message 3 has arrived, we already know from a previous
proof task that

pBj� pA
Kab$ pB: (2)

By the inference rule \message-meaning" and with idealized message 3 (second part) of the protocol, we
obtain

pBj� pAj� fTa; pA
Kab$ pBgKab

: (3)

Since, by assumption pBj� #Ta, we have (if a part of a message is believed to be fresh, then the entire
message is)

pBj� #(fTa; pA
Kab$ pBgKab

): (4)

Finally, by (3) and (4) and \nonce-veri�cation", we can prove our theorem (1). q.e.d.

ATP in Software Engineering 48

Johann Schumann

Example: Output of PIL/SETHEO

Theorem 1. query (` pBj� pAj� pA
KA;B
$ pB).

Proof (by SETHEO). We show directly that

query. (5)

Because of message 3

` pB / (fffTS; pA
KA;B
$ pBggKB;S

; ffTA; pA
KA;B
$ pBggKA;B

g). (6)

Because of query 3

query ` pBj� pAj� pA
KA;B
$ pB. (7)

Because of break up message

` P j� Qj� X X v Y ^ ` P j� Qj� Y . (8)

Because of nonce verification

` P j� Qj� X ` P j� Qj� X ^ ` P j� #X. (9)

ATP in Software Engineering 49

Johann Schumann

Because of freshness ` P j� #Mi ` P j� #fM1; : : : ;Mng.
Because of assumption 11 ` pBj� #TA. Therefore

` pBj� #(fTA; pA
KA;B
$ pBg). (10)

Because of message meaning

` P j� Qj� X ` P / fXgK ^ ` P j� Q
K
$ P . (11)

Because of conjecture 2

` pBj� pA
KA;B
$ pB. (12)

Because of sees components ` P / Mi ` P / fM1; : : : ;Mng. Hence by (6)

` pB / ffTA; pA
KA;B
$ pBggKA;B

. Hence by (11) and by (12)

` pBj� pAj� (fTA; pA
KA;B
$ pBg). Hence by (9) and by (10)

` pBj� pAj� (fTA; pA
KA;B
$ pBg). Hence by (8) : query. Hence by (7) query. Thus we have

completed the proof of (1).

q.e.d.

ATP in Software Engineering 50

Johann Schumann

Overview

1. Introduction

2. Logic Foundations

3. Proof Tasks and their Characteristics

4. Case Studies

(a) logic-based component retrieval
(b) synthesis of scienti�c software
(c) veri�cation of cryptographic protocols

5. Requirements and Techniques

6. Conclusions

ATP in Software Engineering 51

Johann Schumann

Requirements and Techniques

� Is FOL automated theorem proving suitable at all?

� How to connect an ATP?

� How to handle logic extensions?

� How to get results?

� How to handle non-theorems?

ATP in Software Engineering 52

Johann Schumann

Expressiveness

Can your input logic be handled by the ATP?

Can I transform my favorite logic into FOL?

� often Higher-order logic is not that \high":
8P 2 fsend; receiveg � 8Data � correct(Data)! P (Data)

� �nite domains, �nite state spaces make things easier

� have a close look at higher order quanti�er positions

� is translation possible?

ATP in Software Engineering 53

Johann Schumann

Expressiveness II: Translation
expressiveness

Modal FOL

FOL+

HOL

FOL

HORN

PROP

Modal PROP

� solid line: translation possible, dashed: partial translation

� back-translation?

ATP in Software Engineering 54

Johann Schumann

Hilbert-style T-Transformation

� \Meta" approach: for F in logic M we de�ne �rst order predicate T(::)

T(F 0) � True, A `M F

� formulas become terms

� inference rules become FOL formulas:

F1 : : : Fn
G

is translated into T(F 01) ^ : : : ^ T(F 0n)! T(G0).

ATP in Software Engineering 55

Johann Schumann

Hilbert-style T-Transformation

� often convenient

� can induce huge search spaces

� can often be combined with ordinary proof procedures [Ohlbach98]

� can cause problems with quanti�ers

ATP in Software Engineering 56

Johann Schumann

Connecting the ATP

robust and reliable system architecture for

� reading in / preparing proof task

� starting the prover(s)

� assembing/analyzing the result (SUCCESS)

� stopping the ATP

� cleaning up

ATP in Software Engineering 57

Johann Schumann

System architecture

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

Transformation of Syntax

case-splitting

Preselection of axioms

FOL to CNF

extraction of sorts

’

simplification

equality handling

instrumentation for sorts

compilation of

formula

Search for

proof

ATP (SETHEO)

result: Yes/No/Errorproof task

Application System

NORA HAMMR

System architecture for the reuse case study

ATP in Software Engineering 58

Johann Schumann

Extensions: Induction

Induction often required during program veri�cation
(recursive data structures, time-lines)

� induction is inherently higher order

{ variable(s) to perform induction (\induction over i")
{ induction scheme (\n! n+ 1")
{ induction hypotheses and additional lemmata
{ \base-case" and \step-case"

� can induction be performed by a �rst order ATP?

� many proof obligations are fairly \standard"

ATP in Software Engineering 59

Johann Schumann

Ways to do Induction

� additional lemmata: e.g., 8l : list � 9l;m; r : list � l = l ^m ^r

� splitting up into several proof tasks:

F([])
8l : list � 8i : item; l0 : list � F(l0) ^ l = [i] ^l0 ! F(l)

� \Poor Man's Induction":

F([])
8l0 : list � 8i : item � F([i] ^l0)

ATP in Software Engineering 60

Johann Schumann

Induction: Experimental Results

SW-reuse number of tasks
Method total solved failed error %-solved

axioms only 1838 1039 730 69 56.5%

w/lemmas 1838 1271 498 69 69.2%

case-splitting 1838 1235 487 114 67.2%

base 1838 1658 111 69 90.2%
step 1838 1235 487 114 67.2%

poor man's 1838 1302 467 69 70.8%

base 1838 1658 111 69 90.2%
step 1838 1302 467 69 70.8%

� Poor-man's often better, because formulas are smaller

� cannot be complete, but good results in practice

ATP in Software Engineering 61

Johann Schumann

Sorts

� most proof tasks in veri�cation are sorted: 8x : nat � 8l : list : : :

� types in general are undecidable

� if sort hierarchy is upper semi-lattice, then sorted uni�cation is unitary.

� this case is the interesting one

� mapping into ATP:

{ sorts as predicates: huge search space

{ sorted uni�cation: need to modify prover

{ pre-compilation into terms

ATP in Software Engineering 62

Johann Schumann

Compilation of sorts into terms

� checking of sorts done by uni�cation

� Example (many-sorted logic): 8X : nat � p(X)
compiled into p(X,nat)

� extension to tree and DAG structure possible [Mellish,88]

� tools available but some intricacies

ATP in Software Engineering 63

Johann Schumann

How to get results out of the prover?

� Preselection of axioms

� Simpli�cation

� Control of the Prover

ATP in Software Engineering 64

Johann Schumann

Preselection of Axioms

� Domain theory is described by axioms

� all operators/functions are de�ned by axioms

� Example: lists with cons and append:

(1) 8X;Y : list 8I; J : item : cons(I;X) = cons(J; Y)! I = J ^X = Y

(2) 8X : list 9Y : list 9Z : item : X = cons(Z; Y) _X = []

(3) 8L : list 8X : item : cons(X;L) 6= []

(4) 8X : list 8Y : list 8I : item : app(cons(I; L); X) = cons(I; app(L;X))

(5) 8L : list : app([]; L) = L

(6) 8X : list 8Y : list 8Z : list : app(app(X; Y); Z) = app(X; app(Y; Z))

(7) 8X : list 8Y : list : app(X; Y) = []$ X = [] ^ Y = []

(8) 8L : list : app(L; []) = L

ATP in Software Engineering 65

Johann Schumann

Axioms and ATP

� axioms can span a considerable search space.

� especially transitivity is harmful: 8X;Y; Z � p(X; Y) ^ p(Y; Z)! p(X;Z)

� too few axioms ! no proof

� too many axioms ! no proof

� needed:
what are the right axioms?

run-time

just the right axioms

1s

>10**9s

too few too many axioms

ATP in Software Engineering 66

Johann Schumann

Preselection of Axioms

� in general: undecidable

� good approximation [Dahn,Schellhorn/Reif,Fischer]:

{ use hierarchical theories (e.g., one for each group of operators)
{ hierarchy forms DAG or tree
{ select only those sub-theories which
� are used in the conjecture
� are dependent from already selected theories

� reuse case study (% solved problems):
no axioms 46.3%
all axioms 55.9%
preselection 69.2%

ATP in Software Engineering 67

Johann Schumann

Simpli�cation

� most generated proof tasks contain redundant parts

� symbolic algebra systems and interactive TPs:
many person-years spent on simpli�ers

� ATP: usually no built-in simpli�ers

� Reason: benchmarks (TPTP) library contains no redundancies

ATP in Software Engineering 68

Johann Schumann

Simpli�cation II

� case studies show: simpli�cation

{ is extremely important
{ can solve simple problems (26% in reuse case study)
{ can detect many non-theorems (later)
{ reduces size of formula
{ reduces processing time (compiling, loading,. . .)
{ increases number of solved tasks considerably

� here: some powerful, yet easy to perform simpli�cations (preprocessing)

ATP in Software Engineering 69

Johann Schumann

Syntactic Simpli�cation

� logic simpli�cation (of course): A ^True) A

{ important when considering speci�c cases (e.g., induction)
{ X = [] ^ (X 6= [] ^ F) : : :

� removal of de�nitions neq(X;Y)$:equal(X;Y)

{ usually shortens proofs: no intermediate steps to expand/contract
de�nitions

{ can have dramatic e�ects (both ways)
{ in practice: only expand 1:1 de�nitions

ATP in Software Engineering 70

Johann Schumann

Syntactic Simpli�cation II

� removal of simple equations of the form X = t

{ example (SW reuse):

ComponentI I O Oq c q c

8Iq1 ; : : : ; I
q
n; O

q
1; : : : ; O

q
m � 8Ic1; : : : ; I

c
n; O

c
1; : : : ; O

c
m�

(Iq1 = Ic1 ^ : : : ^ Iqn = Icn ^Oq
1 = Oc

1 ^ : : : ^Oq
m = Oc

m

! F)

reduces to F with variable renamings
{ for many proof tasks: run-time reduction by factor of 10

ATP in Software Engineering 71

Johann Schumann

Semantic Simpli�cation

� using a set of rewriting rules extracted from domain theory

� not necessarily con
uent

� examples:
8H;T � cons(H;T) 6= []
8H;T � hd(cons(H;T)) = H

� powerful: application of induction schemas plus simpli�cation

� powerful: unrolling of recursive de�nitions plus simpli�cation

� result (SW reuse): more than 40% of non-valid proof tasks eliminated

ATP in Software Engineering 72

Johann Schumann

Control of the Prover

Requirements:

� usability: control hidden from the user

� smoothness: similar behavior on similar proof tasks

� speed: short answer times

� practical completeness: \we are slow, but we get more tasks solved"

Reality: ATPs have 100's of user-selectable parameters,
some of them known only to the developers of the system

Reality: . . . and even forgotten by the developers

ATP in Software Engineering 73

Johann Schumann

Speed vs. Practical Completeness

number of tasks solved with
tp < t

(a) the ideal case

(b) aim at short answer times

(c) aim at solving as many
tasks as possible, but can
have larger run-times

#proof tasks solved

resources T

(b)

(c)

N (a)

ATP in Software Engineering 74

Johann Schumann

Runtime Behavior of well-known provers

0

200

400

600

800

1000

1200

1400

1600

1800

0.1 1 10 100

P
ro

o
fs

Time (sec.)

OTTER
GANDALF

SPASS
SETHEO

reuse case study (from [Fischer,2000])

ATP in Software Engineering 75

Johann Schumann

Smoothness

� similar proof tasks should result in similar run-times

{ unfortunately not

{ Note:

\changing one : can change validity"

� similar parameter settings should result in similar behavior

{ unfortunately not

� can often help: try out di�erent settings in parallel

{ competitive parallelism

{ network of workstations or schedule

{ usually good results

ATP in Software Engineering 76

Johann Schumann

Handling of Non-theorems

� FOL is undecidable

� ` F prover eventually stops with \SUCCESS"

� 6` F prover almost never stops

� Try :F ?

{ usually :F doesn't do the job either

{ we have: valid, satis�able, unsatis�able

� many applications produce large numbers of non-theorems.
E.g., SW reuse: only 13.1% of proof tasks (1838 of 14161) are valid

ATP in Software Engineering 77

Johann Schumann

Non-theorem Detection by Simpli�cation

� use simpli�cation on formula

� try to reduce to True or False

� combine with induction/de�nition unrolling: e.g.,
F [Xn[]] ^ 8H : item 8T : list � F [Xncons(H;T)]

� SW reuse: 49.5% of non-theorems detected in < 2s sun ultra-sparc

ATP in Software Engineering 78

Johann Schumann

Generation of Counterexamples

� only possible for �nite domains

� systems: Finder [Slaney], ANLDP [McCune], . . .

� problem (big): how to make the domains �nite:

{ Abstraction
{ Approximation

� very di�cult in practice

ATP in Software Engineering 79

Johann Schumann

Conclusions

� ATPs can be successfully applied

� it is no plug-and-play

� ATP developers start to work on applications

� applications needed to drive ATP applications and applicability

� that is You!

ATP in Software Engineering 80

Johann Schumann

Bibliography/WWW-pages

� J. Schumann, Automated Theorem Proving in Software Engineering. Habilitation Thesis, Technische Universit�at M�unchen,
2000. [ask me is you want a copy]

� W. Bibel and P. Schmitt (eds.) Automated Deduction: A Basis for Applications. Kluwer, 1999. (3 volumes)

� S. H�olldobler (ed.) Intellectica and Computational Logic: Papers in Honor of W. Bibel. Kluwer, 2000.

� http://www-formal.stanford.edu/clt/ARS/systems.html

� http://www.comlab.ox.ac.uk/archive/formal-methods.html

� http://www.ase.arc.nasa.gov

� and many more

ATP in Software Engineering 81

